α-Mannosidase (α-man) Activity Assay Kit

Note: Take two or three different samples for prediction before test.

Operation Equipment: Ultraviolet spectrophotometer

Catalog Number: BC5054

Size: 50T/24S

Components:

Reagent	Size	Storage	
Extract solution	Liquid 60mL×1 4°C		
Reagent I	Liquid 50 mL×1	4°C	
Reagent II	powder×2	-20°C	
Reagent III	Liquid 20 mL×1	4°C	
Reagent IV	Liquid 3 mL×1	4°C	
Standard	Standard Liquid 1 mL×1 4°C		

Solution preparation:

1. Reagent II: Before use, add 1mL reagent IV to each to dissolve it, and store the dissolved reagent in aliquots at -20°C, which can be stored for 2 weeks.

2. Standard: 5 mmol/L standard solution.

Product Description:

 α -Mannosidase is widely distributed and has many kinds. It is found in eukaryotic cytoplasm, endoplasmic reticulum, Golgi apparatus, and lysosome. Different types and functions of α -Man participate in the modification process of N-glycans.

 α -Mannosidase reacts with a specific substrate, and the product has a characteristic absorption peak at 405nm. The α -man activity can be calculated according to the rate of change in absorbance.

Reagents and Equipment Required but Not Provided:

Ultraviolet spectrophotometer, desk centrifuge, constant temperature incubator/water bath, pipette, 1 mL quartz cuvette, mortar/homogenizer, ice and distilled water.

Procedure

I. Sample preparation:

1. Tissue sample:

according to the proportion of tissue weight (g): extraction solution volume (mL) of 1:5-10 to extract. It is suggested that 0.1 g of tissue with 1 mL of extraction solution and fully homogenized on ice bath. Centrifuge at 12000 ×g for 10 minutes at 4°C to remove insoluble materials, and take the supernatant on ice before testing.

2. Bacteria or cells:

Collecting bacteria or cells into the centrifuge tube, suggested 5 million with 1 mL of extraction solution. Use ultrasonication to splitting bacteria and cells (placed on ice, ultrasonic power 200w, working time 3 seconds, interval 7 seconds, repeat for 30 times). Centrifuge at 12000 ×g for 10 minutes at 4°C to remove insoluble materials, and take the supernatant on ice for testing.

3. Serum: Detect directly.

II. Determination procedure:

- 1. Preheat spectrophotometer for 30 minutes, adjust wavelength to 405 nm, set zero with distilled water.
- 2. Dilute 5 mmol/L maltose standard solution with distilled water to 0.625、0.3125、0.15625、0.078、0.039, 0.0195, 0.01, 0.005 mmol/L standard solutions.
- 3. Add reagents with the following list:

(1) Enzymatic reaction (In 1.5 mL EP tube)

Reagent (µL)	Contrast tube(c)	Test tube(t)	Standard tube(s)	Blank tube(b)	
Sample	125	125	-	-	
Reagent I	550	625	625	625	
Reagent II	75	-	-	-	
Standard	-	-	125	-	
Distilled water	-	-	-	125	
Mix thoroughly. 37°C water bath for 10 minutes.					
Reagent III	250	250	250	250	

Mix thoroughly. Measure the absorbance at 405 nm, and record them as Ac, At, As, and Ab. Calculate ΔA =At-Ac, ΔA s=As-Ab.

Note: Blank tube only need to test 1~2 times. and the standard curve only needs to be tested 1-2 times.

III. Calculations:

1.Standard curve

Take the concentration of each standard solution as x-axis, and the corresponding ΔA_S is y-axis. Then the linear regression equation y=kx+b is obtained. Bring ΔA into the equation to get x (μ mol/mL).

2. α-man activity

A. Protein concentration

Unit definition: One unit of enzyme activity is defined as the amount of enzyme produce 1 mmol p-nitrophenol per minute every milligram protein.

$$\alpha$$
-man (U/mg prot)= $x\times V_S$ ÷ ($V_S\times Cpr$) ÷ $T\times F=x\times 0.1$ ÷ $Cpr\times F$

B. Sample weight

Unit definition: One unit of enzyme activity is defined as the amount of enzyme produce 1 mmol pnitrophenol per minute every gram tissue.

$$\alpha$$
-man (U/g weight)= $x \times V_S \div (W \times V_S \div V_E) \div T \times F = x \times 0.1 \div W \times F$

C. Cell amount

Unit definition: One unit of enzyme activity is defined as the amount of enzyme produce 1 mmol p-nitrophenol per minute every 10⁴ bacteria or cells.

$$\alpha\text{-man (U/10^4 cell)} = x \times V_S \div (cells (10^4) \times V_S \div V_E) \div T \times F \ x \times 0.1 \div cells (10^4) \times F \times V_S \div V_E \times V_S + Cells (10^4) \times F \times V_S + Cells (10^4) \times F \times V_S + Cells (10^4) \times V_S + Cells$$

D. Serum

Unit definition: One unit of enzyme activity is defined as the amount of enzyme produce 1 mmol pnitrophenol per minute per minute per milliliters.

$$\alpha$$
-man (U/mL)= $x \times V_S \div V_S \div T \times F = x \times 0.1 \times F$

V_S: Add sample volume, 0.125 mL;

V_E: Extract solution volume, 1 mL;

T: Reaction time, 10 min;

Cpr: Protein concentration of sample, mg/mL;

W: Sample weight, g;

F: Dilution ratio.

Note:

1. If the measured absorbance value A>1.5 or Δ A>0.1, it is recommended to dilute the sample before measuring, and multiply the dilution factor in the calculation formula; if the measured absorbance value is low or close to the blank OD value, it is recommended to increase the sample volume before performing the measurement.

Experimental example

1. Take 0.1 g of rabbit liver tissue, add 1 mL extract, and homogenize in ice bath. Centrifuge at 12000 g, 4°C for 10 min. Take the supernatant for test. Following the measurement procedure. Calculate $\Delta A = A2 - A1 = 0.404 - 0.309 = 0.095$. Standard Curve: y = 2.0294x + 0.0092, x = 0.0422. Calculate the activity according to the formula:

 α -man activity (mmol/min/g weight) = $x \times 0.1 \div W \times F = 0.0422 \frac{U/g}{g}$ weight.

Related products

BC0360/BC0365β-1,3-glucanase(β-1,3-GA) Activity Assay Kit

BC2550/BC2555α-glucosidase(α-GC) Activity Assay Kit

BC2560/BC2565β-glucosidase(β-GC) Activity Assay Kit

BC2570/BC2575α-galactosidase(α-GAL) Activity Assay Kit

 $BC2580/BC2585\,\beta$ -galactosidase(β -GAL) Activity Assay Kit