Ascorbate Peroxidase (APX) Activity Assay Kit

Note: Take two or three different samples for prediction before test.
Detection equipment: Spectrophotometer/ Microplate reader
Cat No: BC0225
Size: 100T/96S

Components:

Reagent I: Liquid $120 \mathrm{~mL} \times 1$, store at $4^{\circ} \mathrm{C}$.
Reagent II: Powder $\times 1$, store at $4^{\circ} \mathrm{C}$. Dissolved with 5 mL of distilled water before use.
Reagent III: Liquid $0.5 \mathrm{~mL} \times 1$, store at $4^{\circ} \mathrm{C}$. Before use, according to the sample volume, dilute Reagent III with distilled water 8 times.

Description:

Ascorbate Peroxidase (APX) is an important antioxidase of plant scavenging reactive oxygen, also is one key enzyme of ascorbic acid metabolism. APX has a variety of isozymes located in chloroplast, cytoplasm, mitochondria, peroxides and glyoxylate, peroxisome and thylakoid membrane respectively. APX is the main consumer of plant AsA, which catalyzes the oxidation of AsA by $\mathrm{H}_{2} \mathrm{O}_{2}$. The activity of APX directly affects the content of ASA, and there is a negative correlation between APX and ASA.
APX catalyzes the oxidation of ASA by $\mathrm{H}_{2} \mathrm{O}_{2}$. In this kit, the activity of APX is calculate by the oxidize rate of AsA.

Reagents and Equipment Required but Not Provided:

Refrigerated centrifuge, spectrophotometer/microplate reader, micro quartz cuvette/96 well UV flat-bottom plate, transferpettor, mortar/ homogenizer, ice and distilled water.

Protocol:

I. Sample extraction

Add 1 mL of Reagent I to 0.1 g of sample. Grind thoroughly on ice. Centrifuge at $13000 \times \mathrm{g}$ for 20 minutes at $4^{\circ} \mathrm{C}$, take the supernatant on ice for test.

II. Determination

1. Preheat ultraviolet spectrophotometer or microplate reader for 30 minutes, adjust wavelength to 290 nm , set zero with distilled water.
2. Preheat Reagent I at $25^{\circ} \mathrm{C}$ water bath for 30 minutes.
3. Blank tube: Add $20 \mu \mathrm{~L}$ of distilled water, $140 \mu \mathrm{~L}$ of preheat Reagent I, $20 \mu \mathrm{~L}$ of Reagent II and $20 \mu \mathrm{~L}$ of Reagent III at micro quartz cuvette or 96 well UV flat-bottom plate. Mix thoroughly and timing, measure the absorption values at 10 s and 130 s at 290 nm , record as A 1 and A 2 respectively, $\Delta \mathrm{A}_{\mathrm{B}}=\mathrm{A} 1-\mathrm{A} 2$.
4. Test tube: Add $20 \mu \mathrm{~L}$ of supernatant, $140 \mu \mathrm{~L}$ of preheat Reagent I, $20 \mu \mathrm{~L}$ of Reagent II and $20 \mu \mathrm{~L}$ of Reagent III at micro quartz cuvette or 96 well UV flat-bottom plate. Mix thoroughly and timing, measure
the absorption values at 10 s and 130 s at 290 nm , record as A 3 and A 4 respectively, $\Delta \mathrm{A}_{\mathrm{T}}=\mathrm{A} 3-\mathrm{A} 4$.

III. Calculation

A. Micro quartz cuvette

1) Calculate by sample protein concentration

Unit definition: One unit of enzyme activity is defined as the amount of enzyme catalyzes the oxidation of $1 \mu \mathrm{~mol}$ of ASA in the reaction system per minute every milligram protein.
$\operatorname{APX}(\mathrm{U} / \mathrm{mg}$ prot $)=\left(\Delta \mathrm{A}_{\mathrm{T}}-\Delta \mathrm{A}_{\mathrm{B}}\right) \div(\varepsilon \times \mathrm{d}) \times \mathrm{V}_{\mathrm{RT}} \times 10^{6} \div\left(\mathrm{Cpr} \times \mathrm{V}_{\mathrm{S}}\right) \div \mathrm{T}=1.79 \times\left(\Delta \mathrm{A}_{\mathrm{T}}-\Delta \mathrm{A}_{\mathrm{B}}\right) \div \mathrm{Cpr}$
2)Calculate by fresh sample weight

Unit definition: One unit of enzyme activity is defined as the amount of enzyme catalyzes the oxidation of $1 \mu \mathrm{~mol}$ of ASA in the reaction system per minute every gram tissue sample.
$\operatorname{APX}(\mathrm{U} / \mathrm{g}$ weight $)=\left(\Delta \mathrm{A}_{\mathrm{T}}-\Delta \mathrm{A}_{\mathrm{B}}\right) \div(\varepsilon \times \mathrm{d}) \times \mathrm{V}_{\mathrm{RT}} \times 10^{6} \div\left(\mathrm{V}_{\mathrm{S}} \div \mathrm{V}_{\mathrm{ST}} \times \mathrm{W}\right) \div \mathrm{T}=1.79 \times\left(\Delta \mathrm{A}_{\mathrm{T}}-\Delta \mathrm{A}_{\mathrm{B}}\right) \div \mathrm{W}$
ε : Molar absorption coefficient of AsA at $290 \mathrm{~nm}, 2.8 \times 10^{3} \mathrm{~L} / \mathrm{mol} / \mathrm{cm}$;
d: Cuvette light path $(\mathrm{cm}), 1 \mathrm{~cm}$;
V_{RT} : Reaction total volume(L), $200 \mu \mathrm{~L}=2 \times 10^{-4} \mathrm{~L}$;
10^{6} : $1 \mathrm{~mol}=1 \times 10^{6} \mu \mathrm{~mol}$;
W: Sample weight, g;
Cpr: Supernatant protein concentration, $\mathrm{mg} / \mathrm{mL}$;
V_{S} : Supernatant volume $(\mathrm{mL}), 20 \mu \mathrm{~L}=0.02 \mathrm{~mL}$;
V_{ST} : Reagent I volume, 1 mL ;
T : Reaction time (min), 2 minutes.
B. 96 well UV flat-bottom plate

1) Calculate by sample protein concentration

Unit definition: One unit of enzyme activity is defined as the amount of enzyme catalyzes the oxidation of $1 \mu \mathrm{~mol}$ of ASA in the reaction system per minute every milligram protein.
$\operatorname{APX}(\mathrm{U} / \mathrm{mg}$ prot $)=\left(\Delta \mathrm{A}_{\mathrm{T}}-\Delta \mathrm{A}_{\mathrm{B}}\right) \div(\varepsilon \times \mathrm{d}) \times \mathrm{V}_{\mathrm{RT}} \times 10^{6} \div\left(\mathrm{Cpr} \times \mathrm{V}_{\mathrm{S}}\right) \div \mathrm{T}=3 \times\left(\Delta \mathrm{A}_{\mathrm{T}}-\Delta \mathrm{A}_{\mathrm{B}}\right) \div \mathrm{Cpr}$
2) Calculate by fresh sample weight

Unit definition: One unit of enzyme activity is defined as the amount of enzyme catalyzes the oxidation of $1 \mu \mathrm{~mol}$ of ASA in the reaction system per minute every gram tissue sample.
APX $(\mathrm{U} / \mathrm{g}$ weight $)=\left(\Delta \mathrm{A}_{\mathrm{T}}-\Delta \mathrm{A}_{\mathrm{B}}\right) \div(\varepsilon \times \mathrm{d}) \times \mathrm{V}_{\left.\mathrm{RT} \times 10^{6} \div\left(\mathrm{V}_{\mathrm{S}} \div \mathrm{V}_{\mathrm{ST}} \times \mathrm{W}\right) \div \mathrm{T}=3 \times\left(\Delta \mathrm{A}_{\mathrm{T}}-\Delta \mathrm{A}_{\mathrm{B}}\right) \div \mathrm{W},{ }^{2}\right)}$
ε : Molar absorption coefficient of AsA at $290 \mathrm{~nm}, 2.8 \times 10^{3} \mathrm{~L} / \mathrm{mol} / \mathrm{cm}$;
d: 96 well plate light path (cm), 0.6 cm ;
V_{RT} : Reaction total volume(L), $200 \mu \mathrm{~L}=2 \times 10^{-4} \mathrm{~L}$;
$10^{6}: 1 \mathrm{~mol}=1 \times 10^{6} \mu \mathrm{~mol}$;
Cpr: Supernatant protein concentration, $\mathrm{mg} / \mathrm{mL}$;
W: Sample weight, g;
V_{S} : Supernatant volume (mL), $20 \mu \mathrm{~L}=0.02 \mathrm{~mL}$;
V_{ST} : Reagent I volume, 1 mL ;

T: Reaction time(min), 2 minutes.

Experimental Examples:

1. Take 0.1 g of clover and add 1 mL of Reagent I for homogenization, take the supernatant, and then operate according to the determination steps. Calculate the $\Delta \mathrm{A}_{\mathrm{B}}=\mathrm{A}_{1}-\mathrm{A}_{2}=0.6653-0.6499=0.0154, \Delta \mathrm{~A}_{\mathrm{T}}=$ $\mathrm{A}_{3}-\mathrm{A}_{4}=1.5311-1.2553=0.2758$ with 1 ml quartz cuvette, and calculate the enzyme activity according to the sample mass:

APX $(\mathrm{U} / \mathrm{g}$ mass $)=1.79 \times\left(\Delta \mathrm{A}_{\mathrm{T}}-\Delta \mathrm{A}_{\mathrm{B}}\right) \times \mathrm{W}=1.79 \times(0.2758-0.0154) \div 0.1=4.66 \mathrm{U} / \mathrm{g}$ mass

Recent Product Citations:

[1] Meng C, Quan T Y, Li Z Y, et al. Transcriptome profiling reveals the genetic basis of alkalinity tolerance in wheat[J]. BMC genomics, 2017, 18(1): 24.
[2] Qin Y, Djabou A S M, An F, et al. Proteomic analysis of injured storage roots in cassava (Manihot esculenta Crantz) under postharvest physiological deterioration[J]. PloS one, 2017, 12(3).
[3] Zhang Z, Liu H, Sun C, et al. A $\mathrm{C}_{2} \mathrm{H}_{2}$ zinc-finger protein OsZFP213 interacts with OsMAPK3 to enhance salt tolerance in rice[J]. Journal of plant physiology, 2018, 229: 100-110.
[4] Zhao Y, Yu W, Hu X, et al. Physiological and transcriptomic analysis revealed the involvement of crucial factors in heat stress response of Rhododendron hainanense[J]. Gene, 2018, 660: 109-119.
[5] Djabou A S M, Qin Y, Thaddee B, et al. Effects of Calcium and Magnesium Fertilization on Antioxidant Activities during Cassava Postharvest Physiological Deterioration[J]. Crop Science, 2018, 58(3): 1385-1392.

References:

[1] Shigeoka S, Nakano Y, Kitaoka S. Metabolism of hydrogen peroxide in Euglena gracilis Z by Lascorbic acid peroxidase[J]. Biochemical Journal, 1980, 186(1): 377.
[2] Caverzan A, Passaia G, Rosa S B, et al. Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection[J]. Genetics and molecular biology, 2012, 35(4): 1011-1019.

Related Products:

BC1230/BC1235 Ascorbic Acid (AsA) Content Assay Kit
BC1240/BC1245 Dehydroascorbic Acid (DHA) Content Assay Kit
BC1250/BC1255 L-galactose-1,4-lactone Dehydrogenase (Gal LDH) Activity Assay Kit
BC1260/BC1265 Ascorbic Acid Oxidase (AAO) Activity Assay Kit
BC0650/BC0655 Monodehydroascorbate Reductase (MDHAR) Activity Assay Kit

